BC Calculus Review

Name \qquad

Review of Derivatives, Integrals, and Applications. Calculators should be used for arithmetic operations only.
Write out the derivative with respect to x of each of the following.

$$
\begin{array}{lll}
y=\sin x & y=\cos x & y=\tan x \\
y=\csc x & y=\sec x & y=\cot x \\
y=\sin ^{-1} x & y=\tan ^{-1} x & y=\sec ^{-1} x \\
y=\ln x & y=\log _{a} x & y=a^{x}
\end{array}
$$

I. Find the derivative of the following. Write out solution neatly on your own paper!

1. $y=(x+2)^{8}(x+3)^{6}$
2. $\mathrm{y}=\sqrt[3]{x}+\frac{1}{\sqrt[3]{x}}$
3. $\mathrm{y}=\frac{x}{\sqrt{9-4 x}}$
4. $\mathrm{y}=\frac{e^{x}}{1+x^{2}}$
5. $y=\sin (\cos x)$
6. $y=\sin ^{-1} e^{x}$
7. $\mathrm{y}=\mathrm{xe}^{\frac{1}{x}}$
8. $y=x^{r} e^{s x}$ (r and s are constants)
9. $\mathrm{y}=\tan \sqrt{1-x}$
10. $y=\frac{1}{\sin (x-\sin x)}$
11. $y=\ln (\csc 5 x)$
12. $\mathrm{y}=\ln \left(\mathrm{x}^{2} \mathrm{e}^{\mathrm{x}}\right)$
13. $y=5^{x \tan x}$
14. $x^{2} y^{3}+3 y^{2}=x-4 y$
15. $\mathrm{y}=\arctan (\arcsin \sqrt{x})$
16. Find f^{\prime} in terms of g and $g^{\prime} . f(x)=[g(x)]^{2}$
17. $\int_{1}^{x^{2}} \sqrt{1+t^{3}} d t$
II. Find the definite or indefinite integral as indicated. Write out solution neatly on your own paper!
18. $\int_{0}^{1}\left(1-x^{9}\right) d x$
19. $\int(1-x)^{9} d x$
20. $\int \frac{x}{x^{2}+1} \mathrm{dx}$
21. $\int \frac{1}{x^{2}+1} \mathrm{dx}$
22. $\int \frac{x^{2}-x+1}{\sqrt[3]{x^{2}}} d x$
23. $\int x^{3} \ln x d x$
24. $\int \frac{1}{2-3 x} \mathrm{dx}$
25. $\int \sin x \cos (\cos x) d x$
26. $\int x^{2} e^{-3 x} d x$
27. $\int e^{x} \cos x d x$
28. $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} \mathrm{dx}$
29. $\int \frac{x}{9+x^{4}} \mathrm{dx}$
30. $\int \frac{1-3 y}{\sqrt{2 y-3 y^{2}}} d y$
31. $\int \cos 3 x d x=$
32. $\int t \cos (2 t)^{2} \mathrm{dt}$
33. $\int \frac{\cos x d x}{\sqrt{1+\sin x}}$
34. $\int \sec \frac{t}{2} \mathrm{dt}$
35. $\int \frac{\ln v}{v} \mathrm{~d} v$
36. $\int \ln x \mathrm{dx}$
37. $\int \frac{y-1}{y+1} d y$
38. $\int \frac{5 x-4}{2 x^{2}+x-1} d x$

III. Applications

39. The angle of elevation of the sun is decreasing at a rate of $.25 \mathrm{rad} / \mathrm{hr}$. How fast is the shadow cast by a 400 ft building increasing when the angle of elevation is $\frac{\pi}{6}$?
40. A liquid form of penicillin manufactured by a pharmaceutical firm is sold in bulk at a price of $\$ 200$ per unit. If the total production cost (in dollars) for x units is $C(x)=500,000+80 x+0.003 x^{2}$, and knowing the Profit = Revenue-Cost, how many units of penicillin must be manufactured and sold to maximize profit?
41. A paper cup has the shape of a cone with height of 10 cm and radius 3 cm (at the top). If water is poured into the cup at a rate of 2 cubic cm / s, how fast is the water level rising when the water is 5 cm deep?
42. Find the solution to the differential equations.
a. $\frac{d y}{d x}=y^{2}+1 \quad y(0)=1$
b. $\frac{d y}{d x}=\frac{1+x}{x y} \quad \mathrm{y}(1)=-4$
c. $x+2 y \sqrt{x^{2}+1} \frac{d y}{d x}=0 \quad y(0)=1$
43. The rate at which sewage enters a treatment tank is given by $E(t)=850+715 \cos \left(\frac{\pi t^{2}}{9}\right)$ gallons per hour for $0 \leq t \leq 4$ hours. How many gallons of sewage are in the tank after 4 hours if 250 gallons are in there at time $\mathrm{t}=0$?
44. The rate of change of bacteria growth is proportional to the amount present. If the count was 400 after 2 hours and 25,600 after 6 hours. $\quad\left(y=\right.$ amount present, $\frac{d y}{d x}$ is the rate of growth, $\frac{d y}{d x}=k y$ is the rate of growth is proportional to the amount present where k is the constant of proportionality.)
a. What was the initial population of the culture?
b. Find an expression for the population after t hours.
c. In what period of time does the population double?
d. When will the population reach 100,000 ?
