ARE YOU READY FOR CALCULUS ?

Complete the following problems on separate paper. Show work for each problem!

- 1. Completely factor: $4x^2 36$ 2 **4. Simplify:** $\left(x^{\frac{1}{2}}x^{\frac{3}{2}}\right)^{\frac{1}{7}}$ 3. Simplify: $\frac{x^{-2}y^{-6}}{3x^{-4}y^3}$
- 5. Simplify: $\left(\sqrt{3x} + \sqrt{5x}\right)^2$ 6
- **7. Simplify:** $\sqrt[3]{24x^3y^{12}}$ 8
- 9. Evaluate: $\frac{1}{27^{\frac{-1}{3}}}$ **10. Write in exponential form:** $\sqrt[3]{7x^2y^6}$
- 11. Multiply: (3x 7)(2x + 9)

13. If
$$y = \left(\frac{1}{2}\right)^x$$
, find y when x = -2.

- **15.** If the two solutions of the quadratic equation $4x^2 + 4x + k = 0$ are equal, find "k".
- **17.** The equation of the line containing the points (1, 5) and (4, 3) is :
- **19.** Determine if (x + 2) is a factor of $x^{5} + 3x^{4} - 2x + 4$.

2. If x = 3 and y = 5, and
$$\frac{1}{z} = \frac{1}{x} + \frac{1}{y}$$
, then z = ?

5. Simplify:
$$3x^{\frac{-2}{3}} \bullet 4x^{\frac{1}{2}} =$$

8. Simplify:
$$\left(\frac{3x^2y^3}{xw^{-2}}\right)^3 =$$

- 12. Factor: $x^2 + x 12$
- **14. Solve:** (3-x)(1+x) < 0
- 16. If the roots of a quadratic equation are -3/2 and 4/5, find one possible equation.
- 18. Translate the following. Do not solve. C varies jointly as d and the cube of e, and inversely as the square root of m.
- 20. How many different real numbers satisfy the equation $6x - x^2 = 9$?

Name_

- 21. If $a^{10} = 4900$, find a^5 .
- 23. Change log_{10} 10,000 = 4 to exponential.
- **25. Simplify:** $\log_2\left[\left(\sqrt[3]{x}\right)y\right]$
- 27. Solve: $\log_2(6-2x) \log_2 x = 3$
- **29. Sketch:** $x = \sqrt{y}$
- **31. If** $|x-3| \le 4$, what is the largest that |x-5| could possibly be ?
- **33.** Give the domain of: $f(x) = \sqrt{3-x}$
- 35. If y = f(x), describe the transformation of f(x) for y = 2 + f(-x)
- **37.** The equation of a circle whose radius is 4 and whose center is (1,-3) is ?
- 39. If $f(x) = x^2 1$ and g(x) = 2x + 1, find f(g(x)).
- **41. Simplify:** $(\csc^2 \theta 1)\tan^2 \theta =$

- 24. Solve for b: $\log_{b} 81 = 4$.
- **26. Sketch:** $y = 1 + \log(x)$
- 28. Give the x-intercept of the graph of $y = \log (x 2)$.
- **30.** $\log_{49}\left(\frac{1}{7}\right) =$
- **32. Find the solution set of** |x+3| < 7.
- **34.** Give the domain of: $f(x) = \frac{3x+1}{x^2 2x}$
 - 36. Find the equation of any line perpendicular to y = 3x + 4.
 - 38. The graph of x 3y + 12 = 0 crosses the y-axis at y = ?
 - **40.** Let $f(x) = 2x^{\frac{1}{3}} + 27$. Find $f^{-1}(x)$.
- 42. T or F? $\cos^2 x \sin^2 x = 1$

- 43. If sin A = $\frac{-3}{7}$ with A in the third quadrant, find cos A.
- 45. What is the horizontal distance from the base of a tree 36ft tall if the angle of elevation is 52°?
- 47. Which of the following functions is decreasing on its entire domain?
 - **a)** $\cos x$ **b)** |x|**c)** $\frac{1}{x}$ **d)** $10^{\frac{x}{2}}$
- 49. Which of the following functions Has a "corner" in its graph ? a) $f(x) = 7x^2 + 5$ b) f(x) = |x-2|
 - c) $g(x) = \frac{x+1}{x}$ d) $h(x) = x^3$
- **51. Find:** $\tan(2x)$ if $x = \frac{\pi}{3}$
- 53. If $px^2 + qx + r = 0$, then x = ?

55. If
$$x > 0$$
, $y > 0$, then $\sqrt{27\sqrt{81x^8y^6}} =$

- 57. Solve the system: x + 4y = 13x + 8y = 2
- **59. Simplify:** $\frac{6x^4y 2xy^4}{2xy}$

- 44. Give the period of: f(x) = 4sin(3x)
- 46. Simplify: $(\sin x)(\tan x)(\csc^2 x) =$
- 48. Which of the following is false for Some real number x ?

a)
$$x^2 - x + 1 > 0$$

b) $x = \sqrt{x^2}$
c) $1 = \frac{x^2 + 1}{x^2 + 1}$
d) $x = \sqrt[3]{x^3}$

- 50. Which of the following are polynomials?
 - a) $x + x^{-1}$ b) $3x^2 + \sqrt{7}x - 8$ c) $\frac{x+1}{x-1}$ d) $\tan (4x)$
- **52. Find:** $\cos(3x)$ if $x = \frac{\pi}{6}$
- 54. If the length of a rectangle is 8 more than its width, what is the area of the rectangle?
- 56. If p(x+q) = qx s and $p \neq q$, then x = ?
- 58. Two cars start moving from the same point. One travels south at 100 km/hr, the other west at 50 km/hr. How far apart are they two hours later?
- 60. If f(1) = 3, f(2) = 1, f(3) = 1, g(1) = 2, g(2) = 2, and g(3) = 3. Find: f(g(f(2) + 2)).