Pre-requisite Review Packet to prepare for Accelerated Geometry/Algebra II

This packet is a review of Algebra I and basic Geometry skills. Students should know this material well in order to be successful as more advanced topics are studied in Accelerated Geometry/Algebra II. This packet is mandatory and is to be turned in on the first day of class. You may use a calculator. Show all work on notebook paper or graph paper.

A. Order of Operations—PEMDAS P-Parentheses, E-exponents, MD multiplication/division in order left to right, AS addition/subtraction in order left to right. example: $3(4+2)^2-15\div5\cdot4$

3(6)²-15 \div 5·4 Parentheses 3(36)-15 \div 5·4 Exponents 108 - 3·4 Multiplication/Division in order left to right 108 - 12 same 96

1. $6 \div 3 \cdot 2^3$ 2. $2(2+3)^2 - 20 \div 4 \cdot 3$

Evaluate each expression if x = 1, y = 0, z = 8, a = 2, b = 3, and c = 5. 3. $(z-x)^y-z \div (c-b)a$ 4. $(z-b)^a-acb$

B. Simplifying Algebraic Expressions example: 8c-4-3(5c-6) = 8c-4 - 15c + 18 = -7c + 14

1. 3xy - 7y - 2(3 - 6y) 2. 3r(r - 10s) - 4r(7s + 2r) 3. 2a(3 - 4b + 8bc) - 6b(3a - 1 - 4ac)

C. Properties of Exponents: $a^m \cdot a^n = a^{m+n}$ $(a^m)^n = a^{mn}$ $\frac{a^m}{a^n} = a^{m-n}$ $a^{-n} = \frac{1}{a^n}$ $a^0 = 1$ $a^{\frac{1}{2}} = \sqrt{a}$

1. $(3^2x^3y)(4xy^2)$ 2. $(3m^2n^3)(2mn^4)^2$ 3. $-2(-4x^2y^3)^3$ 4. $(4^2)(4^3)$

5. $(-3\cdot 2)^0$ 6. $3x^2y^{-2}(-2x^3y^{-4})$ 7. $25^{1/2}$ 8. $\left(\frac{-2p^5q^{-4}}{q^3}\right)^3$ 9. $x^{-1}-y^{-1}$

D. Solving Equations

1.
$$4-5x = 19$$

2. $\frac{1}{6}x + \frac{3}{2} = 2$
3. $-\frac{1}{3}x + 1 = \frac{3}{2}x - 1$
4. $3-\frac{1}{4}x = 6x$
5. $\frac{4(x+5)}{3} = \frac{-3(x-7)}{5}$
6. Solve for y. $Ax + By = C$
7. Solve for b. $\frac{1}{2}bh = A$
8. Solve for b₂. $A = \frac{1}{2}h(b_1 + b_2)$
9. Solve for t: $I = P(1 + rt)$

E. Functions. Example: If f(x) = 3x + 2, find f(4) and f(-3) and f(x+2). To find f(4), substitute 4 where you see x. f(4) = 3(4) + 2 = 12 + 2 = 14To find f(-3), substitute -3 where you see x. f(-3) = 3(-3) + 2 = -9 + 2 = -7To find f(x+2), substitute x+2 where you see x. f(x+2) = 3(x+2) + 2 = 3x + 6 + 2 = 3x + 8

1. If g(x) = 5x - 3, find g(6), g(-2) and g(x+2).

2. If $h(x) = x^2 - 3x + 2$, find h(-2) and h(4).

F. Solving	Inequalities.			
Example:	3x + 5 > -4	Example: $-2x - 5 < 7$	Example: $-4 < 2x + 6 < 8$	
	3x > -9	-2x < 12	-10 < 2x < 2	
	x > -3	x > -6	-5 < x < 1	
When multiplying/dividing by a negative, do not forget to switch the direction of the				
ir	nequality symbol.			

1. 4y - 3 > -11 2. -10x + 1 > 11 3. -4x - 6 > 7x - 14 4. -5 < 3 - 2x < 8

G. Graphing linear equations.

When graphing linear equations and inequalities, first put the equation in slope-intercept form. y = mx + b, where m is the slope and b is the y-intercept.

Example: Graph x - 3y = -6.

Solve for y:
$$-3y = -x - 6$$

 $y = \frac{1}{3}x + 2$

1) begin by placing the y-intercept (b) on the y axis. In this example, the y-int. is 2.

- 2) move, use the slope (m) to move from this y-intercept to the next point on the line.
- In this example, the slope is 1/3. Since slope = rise/run, so rise 1 and run right 3. 3) finish by drawing the line. Note: x = # is a vertical line drawn through

5) minsh by drawing the mile

Note: x = # is a vertical line drawn through that number perpendicular to the x-axis.

Graph the following on your own graph paper. State the slope and y-intercept for each. 1. 3x + y = 4 2. 3x - 2y = 4 3. x = 3 4. y = -2

H. Graphing linear inequalities.

When graphing linear equations and inequalities, first put the equation in slope-intercept form. y = mx + b, where m is the slope and b is the y-intercept.

Example: Graph
$$x - 3y \ge -6$$
.

Solve for y:
$$-3y = -x - 6$$

 $y = \frac{1}{3}x + 2$ step 2) Test (0, 0) Is $0 - 3(0) \ge -6$? yes.

- 1) Put in y =form and graph the line.
- 2) Decide if the line is solid or dotted. (>, < dotted, \leq , \geq solid)
- 3) Test a point NOT ON THE LINE into the inequality. If the point satisfies the inequality, (that is, makes it a true inequality) then shade the side of the line containing the point. If the point does not satisfy the inequality, shade the other side of the line.

1. 12x - 6y > -30 2. $2x + 3y \ge 9$ 3. 4 - x > 7 4. 2 < y - 1 < 4

I. Finding Equations of Lines. Example: Find the equation of the line parallel to Use y = mx + by = 3x - 4 containing the point (2, -3). OR Point-slope form $y - y_1 = m(x - x_1)$ Step 1: Find the slope. Slopes of parallel lines are =. In y = 3x - 4, the slope is 3. Therefore, the line we need has a slope m=3. Step 2: Plug (2, -3) into one of the forms for a line. y+3 = 3(x-2). Then solve for y. y + 3 = 3x - 6y = 3x - 9. Alternate method : Use y = mx + b. Plug in 2 for x and -3 for y to find b. y = mx + b-3 = 3(2) + b-9 = bDON'T FORGET TO PLUG BACK IN AND GIVE THE EQUATION—y = 3x - 9

Find the equation of the following lines.

1. Contains (4, -1) and (3, 5).2. Parallel to 4x + y = 9 through (-1, 5)3. Perpendicular to 4x + y = 9 through (8, 3).(Remember: The slopes of perpendicular lines are opposite reciprocals.)4. Perpendicular to the x-axis through (2, 5).

J.	Systems of Equations.		
	1. To solve a system graphically, put both equations in $y = $ form and graph both		
	equations. The solution to the system is the point of intersection of the two lines.		
	2. To solve a system by substitution, solve one equation for a single variable, then		
	substitute the expression into the second equation and solve. Solve for the second.		
	3. To solve a system by elimination, put both equations in standard form $Ax+By=C$.		
	Multiply one or both equations so that the coefficients of one of the variable terms are		
	opposites. Then add the two e	equations and solve. Solve for the other variable.	
		-	
	Example by substitution:	Example by elimination:	
	x - y = 5	3x - 2y = 4	
	2x + y = 1	2x + y = 5	
	The first equation is easy	It would be easy to get the y's to be	
	to solve for x.	opposites. Multiply the second equation	
	x = y + 5 and substitute	by 2.	
	into the second equation.	3x - 2y = 4	
		4x + 2y = 10	
	2(y+5) + y = 1	Now add the equations together.	
	2y + 10 + y = 1	7x = 14	
	3y = -9	x = 2	
	y = -3	Go back and find y by plugging into either equation.	
	Go back and find x.	3(2) - 2y = 4	
	x = y + 5	6 - 2y = 4	
	x = -3 + 5	-2y = -2	
	$\mathbf{x} = 2$	y = 1	
	Write solution as (x,y).	Write solution as (x, y)	
	(2, -3)	(2, 1)	

1. Solve by graphing :	2. Solve by substitution:	3. Use elimination.
x + y = 5	3x - 2y = -3	4a + 3b = -2
3x - 2y = 20	3x + y = 3	5a + 7b = 17

4. Use either method.

5.
$$3x - 2y = 10$$

-1.5x+y = 8

 $\frac{2x}{5} - \frac{3y}{4} = -2$ $\frac{x}{2} + \frac{y}{4} = 7$

K. Multiplying polynomials.	
Example: $(2x - 3)(x+2)$	Another example:
Use Foil	
$2x^2 + 4x - 3x - 6$	
$2x^2 + x - 6$	$(2x-3)^2$
	(2x-3)(2x-3)
	$4x^2 - 6x - 6x + 9$
	$4x^2 - 12x + 9$

MULTIPLY:

1. c^2-81

- 1. $3x^{3}(5x^{2}-2x+1)$ 2. (3x-2)(2x+5) 3. (2y-5)(2y+5)
- 4. $(3x-5)^2$ 5. $(2x+3)(3x^2-4x+5)$

L. Factor the Trinomials Example 1: Greatest Common Factor: $4x^2-2x = 2x(2x-1)$ Example 2: Trial and Error: $x^2-5x+6 = (x-6)(x-1)$ Check by multiplying back together. Example 3: Leading Coefficient not 1: $3x^2-7x-6 = (3x+2)(x-3)$ Example 4: <u>Difference of Two Squares:</u> $9x^2-25 = (3x-5)(3x+5)$ FACTOR:

5.
$$r^2+16r+28$$
 6. $2x^2+5x+3$ 7. $3x^2+x-2$ 8. x^3-6x^2+9x Hint: GCF first

2. $15a^{2}b-10ab$ 3. $x^{2}+9x+20$ 4. $x^{2}-3x-10$

M. Solving quadratic equations:	$3x^2 - 13x =$	= -10	$4a^2 - 2 = -3a$
1. Set the equation $= 0$.	$3x^2 - 13x +$	-10=0	$4a^2 + 3a - 2 = 0$
2. Factor if possible. If not, use quadratic formula.	(3x-10)(x-	-1)=0	
			$a = \frac{-3 \pm \sqrt{3^2 - 4(4)(-2)}}{2(4)}$
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$			$a = \frac{-3 \pm \sqrt{9 + 32}}{8}$
			$a = \frac{-3 \pm \sqrt{41}}{8}$
 If it factors, set the factors=0. Solve each equation. 	3x-10=0 x = 10/3	x-1=0 x = 1	

1. $a^2 + 3a = 40$ 2. $4x^2 + 8x + 3 = 0$ 3. $t^2 + 9t = 0$ 4. $3x^2 + 11x + 4 = 0$

5. $y^2 = 81$ 6. $n^2 - 24 = 5n$ 7. $2a^2 - 7 = 13a$

N. Distance Formula Mildpoint Formula Stope

$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	$\left(\frac{\mathbf{x}_2 + \mathbf{x}_1}{2}, \frac{\mathbf{y}_2 + \mathbf{y}_1}{2}\right)$	$m = \frac{y_2 - y_1}{x_2 - x_1}$
Example: For the points,	A(2, -3) and B(-5, 8), find	each.
$d = \sqrt{(-5-2)^2 + (83)^2}$ $d = \sqrt{(-7)^2 + (11)^2}$ $d = \sqrt{49+121}$ $d = \sqrt{170}$	Midpt. = $\left(\frac{2+-5}{2}, \frac{-3+8}{2}\right)$ = $\left(-\frac{3}{2}, \frac{5}{2}\right)$	$m = \frac{8 - (-3)}{-5 - 2}$ $= -\frac{11}{7}$

A. Find the distance between the two points.

B. Find the midpoint of the segment with these two endpoints.

C. Find the slope of the line passing through these 2 points.

1. (-3, 5) (2, 8) 2. (8, -3) (-6, -11)

O. Geometry Topics: Make sure you know what the following geometry terms mean

- 1. Transformations reflection, rotation, translation, dilation
- 2. Congruent Triangles SAS, SSS, ASA
- 3. Similar Triangles AA, SSS, SAS
- 4. Right Triangle Trig Ratios Sine, Cosine, Tangent